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1. A little bit about the philosophy of mathematics and the
Universe of Sets

• Formalism vs Platonism. We will follow a Platonistic approach using
formalistic methods and call the mathematical universe V .

• The näıve approach, the ”definition of a set” and Russel’s paradox
vs the axiomatic approach. We will follow the axiomatic approach.

• Set theory is formulated in first-order logic with equality (together
with all the logical axioms associated) in the language L = {∈}
where “ ∈ ” is a binary relation. We think of V as a model of in this
language, satisfying the ZFC ( or ZF ) axioms that we will list in
the next subsection. Through the axioms, we will get some sort of
idea how V looks like.

• Working in V is only a technical issue since we will always prove from
the axioms that the objects we are interested in exist, and therefore
the model which we start with does not matter.

2. The theory of sets

2.1. Existence, Extensionality and Comprehension.

Ax0.(Existence) ∃x.x = x

From the set existence we can only prove that the universe is non-empty,
for example {∅} is a model for this.

Ax1.(Extensionality) ∀x∀y((∀z, z ∈ x↔ x ∈ y) → x = y)

The axiom of extensionality is not contributing to the existence of new sets.
It is used usuality to prove uniqueness.

Example 2.1. Let us claim that from extensionality, if there is a set x such
that ∀z.z /∈ x then x is unique.

Proof. Suppose that x1, x2both satisfy that for all ∀z.z /∈ xi (i = 1, 2), then
the antecedent ∀z.z ∈ x1 ↔ z ∈ x2 is satisfied and therefore x1 = x2. □
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For every formula ϕ in the language of set theory, such that y is not free
in ϕ we have the following axiom scheme which is the universal closure of
the following:

Ax3.(Comprehension scheme) ∀x∃y∀z.z ∈ y ↔ z ∈ x ∧ ϕ
The intention of this axiom is to define sets of the form {z ∈ x | ϕ}, and the
resulting set is the variable y appearing in the axiom. The universal closure
of the formula ensures that we can use parameters in our definition of a set.
This axiom guarantees the existence of a unique empty set since:

(1) By Ax1, there is some x.
(2) By Ax3 applied to the formula z /∈ x we get a set y such that ∀z.z /∈ y

(since z ∈ x ∧ z /∈ x is always false).
(3) By Ax2, as we have seen, such a set y is unique.

Now since this set is unique we reserve a special symbol for it

Definition 2.2. Assume Ax1,Ax2,Ax3. Let ∅ denote the unique set y such
that ∀z.z /∈ y.

Also, using comprehension, we get that Russell’s paradox is simply a
theorem:

Theorem 2.3. ¬x.∀z.z ∈ x

Definition 2.4. A ⊆ B denotes the formula ∀z.z ∈ A→ z ∈ B.

Exercise 1. (1) A ⊆ A.
(2) ∅ ⊆ A.
(3) A = B ↔ A ⊆ B ∧B ⊆ A
(4) A ⊆ B ⊆ C → A ⊆ C

We cannot prove much more using Ax1, Ax2, Ax3 since {∅} is a model of
Ax1, Ax2, Ax3.

2.2. Pairing, Union and Replacement. Using the following axioms, we
can ensure that some of the most basic concepts in set theory exists and in
particular prove the existence of non-empty sets.

Ax4.(Pairing) ∀x∀y∃w.x ∈ w ∧ y ∈ w

So using comprehension we can now prove the existence of the set {x, y}
and the set {x} by applying paring to x, x and by a suitable comprehension.
So we can now define order pairs:

Definition 2.5. the ordered pair of x and y is defined by

⟨x, y⟩ := {{x}, {x, y}}

Ordered pairs exists by applying pairing and comprehension to {x}, {x, y}.

Theorem 2.6 (Pairs equality). For every x, y, x′, y′ we have

⟨x, y⟩ = ⟨x′, y′⟩ ↔ x = x′ ∧ y = y′
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Ax5.(Union) ∀F∃Y.(∀x.(∃z.z ∈ F ∧ x ∈ z) → x ∈ Y )

The set Y only includes the union of the sets in F but with comprehension
we my form the (unique) set:

Definition 2.7. For any set F we define

∪F := {x ∈ Y | ∃z ∈ F .x ∈ z}
where Y is the set guaranteed from Ax5.

Exercise 2. Prove that the definition of ∪F does not depend on the choice
of Y . Namely, if Y, Y ′ are two sets witnessing the union axiom for F , then
the resulting definition ∪F is the same.

The following definition does not require the union axiom:

Definition 2.8. Let F ̸= ∅, define the intersection

∩F := {x | ∀z ∈ F .x ∈ z}

Note that the intersection exists by comprehension and since it equal

∩F := {x ∈ B | ∀z ∈ F .x ∈ z}
where B is any member of F .

Exercise 3. Define (and prove the existence) of the following objects: A∪B,
A ∩B, A \B, A∆B.

For every formula ϕ(x, y) such that Y is not free in ϕ(x, y), the universal
closure of the following formula is an axiom:

Ax6.(Replacement scheme) (∀x ∈ A.∃!y.ϕ(x, y)) → (∃Y.∀x ∈ A.∃y ∈ Y.ϕ(x, y))

The intuition is that ϕ defines some function f using parameters with x ∈ A
as input and y as output. Then we can find a set Y such that for every
x ∈ A, f(x) ∈ Y . Now using comprehension we can define the set

{f(x) | x ∈ A} := {y ∈ Y | ∃x ∈ A.ϕ(x, y)}
Define the cartesian product of two sets as:

A×B := {⟨a, b⟩ | a ∈ A, b ∈ B}
How do we justify the existence of this set?

• consider the formula ϕ(x, y) = “y = ⟨a, x⟩. Then for every a (the
universal closure) we have that foe very b ∈ B, there is a unique y
such that ϕ(b, y). So by replacement (and comprehension) we can
define the set {a} ×B

• Now we use replacement again with the formula ψ(x, y) = “y =
{x} ×B” or formally1:

ψ(x, y) = “∀z.z ∈ y ↔ ∃b ∈ B.z = ⟨x, b⟩”

1We leave the notation of ⟨a, b⟩ but it can be removed as well.
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we see (by extensionality) that for every x ∈ A there is a unique y
such that ψ(x, y) so we may form the set {{x} ×B | x ∈ A}.

• Finally, we define

A×B = ∪{{x} ×B | x ∈ A}
Axioms Ax0,Ax1,A3-Ax6 suffice to develop the theory of relations, function,
equivalence relations and orders. We assume that the reader is familiar
with those definitions and we encourage her to construct all the standard
objects from the axioms. The assumed theory and notations are given in the
preliminaries chapter. We refer the reader to the first chapter of K.Kunen’s
book ”introduction to independence proofs” for a complete account of the
assumed material.

Remark 2.9. Note that the Powerset axiom is not needed in order to formu-
late this part of set theory and comes only later.

3. Well ordering

Recall that a (strong) order on a set A is a relation R which is transitive,
reflexive, and strongly-anti-symmetric. R is total if every any two members
a, b ∈ A are R-comparable, namely: a = b ∨ aRb ∨ bRa.

Definition 3.1. An total order R on A is called a well-order if:

∀X ⊆ A.X ̸= ∅ ⇒ ∃minR(X)

where minR(X) is a (unique) element in x ∈ X such that ∀y ∈ X.x ̸= y ⇒
xRy.

Example 3.2. • Every total order on a finite set is a well-order.
• N with the regular order is a well order.
• N× N with the lexicographic order is a well order.
• Consider the following order of NN given by fRg iff f(n∗) < g(n∗)
where n∗ = min{n | f(n) ̸= g(n)}. Then R is a total ordering of NN
which is not a well-order.

Definition 3.3. Let ⟨A,R⟩, ⟨B,S⟩ be ordered sets. An order-isomorphism
between them is a bijection f : A → B which is order-preserving, namely:
∀a, b ∈ A.aRb ⇔ f(a)Sf(b). We say that ⟨A,R⟩ ≃ ⟨B,S⟩ if there is an
isomorphism between them.

Definition 3.4. Let ⟨A,R⟩ be an ordered set, define AR[x] = {y ∈ A |
yRx}.

Lemma 3.5. If ⟨A,R⟩ is a well order then for any x ∈ A, ⟨A,R⟩ ̸≃
⟨AR[x], R⟩.

Proof. Suppose that f : R → AR[x] witnesses otherwise, let B = {y |
f(y)Ry}. B is not empty since f(x) ∈ AR[x] and therefore f(x)Rx. Let x∗ =
minR(B), then f(x∗)Rx∗ and since f is order preserving f(f(x∗))Rf(x∗),
hence f(x∗) ∈ B, contradictiong the minimality of x∗. □
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Exercise 4. Find a counter-example for the previous lemma in case that
⟨A,R⟩ is not well ordered.

Lemma 3.6. Suppose ⟨A,R⟩, ⟨B,S⟩ are well-orders and ⟨A,R⟩ ≃ ⟨B,S⟩.
Then the isomorphism between them is unique.

Proof. Suppose that g1, g2 are two isomorphisms and toward contradiction
assume that g1 ̸= g2. Let x∗ = min{x ∈ A | g1(x) ̸= g2(x)}. Then g1(x

∗) ̸=
g2(x

∗). Without loss of generality, suppose taht b := g1(x
∗)Sg2(x

∗) and
let yRx∗ be such that g2(y) = b, then g1(y)Sg1(x

∗) = b = g2(y), thus
g1(y) ̸= g2(y) and therefore y ∈ {x | g1(x) ̸= g2(x)} contradiction the
minimality of x∗. □

Definition 3.7. Let ⟨A,R⟩ be a well-ordering A set X ⊆ A is called an
initial segment if ∀y ∈ X∀z ∈ A.zRy → z ∈ X.

Lemma 3.8. Let ⟨A,R⟩ be a well-ordering and X ⊆ A. Then X is an
initial segment iff X = A or ∃x ∈ A.AR[x] = X.

Proof. Exercise. [Hint: define x = minA \X] □

Theorem 3.9 (The trichotomy theorem of well-ordering). Let ⟨A,R⟩ ,⟨B,S⟩
be well-ordering. Then exactly one of the following holds:

(1) ⟨A,R⟩ ≃ ⟨B,S⟩.
(2) there is x ∈ A such that ⟨AR[x], R⟩ ≃ ⟨B,S⟩.
(3) there is y ∈ B such that ⟨A,R⟩ ≃ ⟨BS [y], S⟩.

Proof. Let

f = {⟨a, b⟩ ∈ A×B | ⟨AR[a], R⟩ ≃ ⟨BS [b], S⟩}

First we claim that dom(f), Im(f) are initial segments. To see this, is
suffices to prove that they are downward closed. For example, if a′Ra and
a ∈ dom(f) then there is b such that ⟨AR[a], R⟩ ≃ ⟨BS [b], S⟩. Let g :
AR[a] → BS [b] be an isomorphism witnessing this. Note that AR[a

′] is an
initial segment of AR[a] and therefore g ↾AR[a

′] is defined, order preserving
and 1 − 1. Let b′ = g(a′), it is not hard to verify that Im(g) = BS [b

′]
and therefore g ↾ AR[a

′] witnesses the fact that ⟨AR[a
′], R⟩ ≃ ⟨BS [b

′], S⟩
which implies that a′ ∈ dom(f). Similarily, Im(f) is an initial segment.
Also f must be (univalent and) injective since otherwise, we would have
had a1Ra2 such that b = f(a1) = f(a2) and in particular ⟨AR[a1], R⟩ ≃
⟨BS [b], S⟩ ≃ ⟨AR[a2], R⟩ which contradicts the lemma that a well ordering
is not isomorphic to its proper initial segments.

Finally, we claim that it is impossible that both dom(f), Im(f) are proper
initial segment, sense otherwise, dom(f) = AR[x] and Im(f) = BS [y] and
we let x′ = minA \ AR[x] and y′ = minB \ BS [y], then we can extend f
to be defined on AR[x

′] by sending f(x) = y witnessing that x′ ∈ dom(f),
contradiction. □
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4. ordinals

The basic theory is due to Von Neuman.

Definition 4.1. A set x is called trastivie if

∀y ∈ x∀z ∈ y.z ∈ x ≡ ∀y ∈ x.y ⊆ x

Example 4.2. ∅, {∅}, {∅, {∅}}, {∅, {∅}, {{∅}}}

Exercise 5. If F is a set of transitive sets then ∪F ,∩F are both transitive
sets.

Transitive sets are sets for which the ∈-relation is transitive.

Definition 4.3. A set α is called an ordinal if α is a transitive set and

∈α:= {⟨x, y⟩ ∈ α2 | x ∈ y}
is a well order on α.

Remark 4.4. The axiom of foundation and the axiom of choice will later tell
us that an infinite decreasing ∈- sequence does not exist and therefore it will
suffice to require that ∈α is a total order.

Example 4.5. ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} the set {∅, {∅} {{∅}}}
is an example of a transitive set which is not an ordinal (since ∅ and {{∅}}
are not ∈-comperable). If x = {x} then x is not an ordinal since we will
have x ∈ x and therefore ∈ is not anti reflexive. For the same reason, for
every ordinal α, α /∈ α.

Theorem 4.6. (1) If α is an ordinal and x ∈ α then x is an ordinal
and x = α∈[x].

(2) α ⊆ β iff α ∈ β ∨ α = β.
(3) If α, β are ordinals such that α ≃ β then α = β.
(4) For every two ordinal α, β, α ∈ β ∨ β ∈ α ∨ α = β.
(5) If C is a set of ordinals then there is min∈(C).
(6) If C is a set of ordinals then ∪C is an ordinal and had the property

of supremum, namely, it is an upper bound of C: ∀α ∈ C.α ⊆ ∪C
and if β is an upper bound for C then ∪C ⊆ β.

Proof. (1) exercise. (2), from right to left is easy. From left to right, suppose
that α ⊆ β and α ̸= β, let γ = min(β \ α), we claim that γ = α. If x ∈ γ,
then x ∈ β and bu minimality of γ, x ∈ α. If x ∈ α, then x ∈ β by
inclusion. x, γ are comparable in ∈, but γ = x and γ ∈ x is ruled out since
γ ∈ β \ α, so x ∈ γ. By double inclusion α = γ. For (3), suppose that there
is x ∈ α such that f(x) ̸= x and let x be the minimal such x. Then x is an
ordinal and x = f [x] ⊆ β, but then x ∈ β and x ∈ f(x) so there is y ∈ α
such that f(y) = x ̸= y but then y ∈ x since f is order-preserving which
contradicts the minimality of x. (4) follows from (1), (3) and the trichotomy
theorem □

Corollary 4.7. ¬∃z.∀x.x is an ordinal ⇒ x ∈ z
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Proof. Otherwise, let On = {α ∈ z | α is an ordinal} (which exists by com-
prehansion), then On is a transitive set (by (1) of the previous theorem) and
∈ well orders On (by (3) and (5)) and therefore On is itself an ordinal, so
On ∈ On. However, no ordinal can be a member of itself, contradiction. □

We denote the class of all ordinals by On.

Remark 4.8. As we have just proved, there is no formal object which is On
in the mathematical universe, thus, there is no formal distinction between
”x ∈ On” and ”x is an ordinal”, or ”A ⊂ On” and ”∀x ∈ A, x is an ordinal”.

Theorem 4.9. For any well-ordered set ⟨A,R⟩ there is a unique ordinal
α such that ⟨A,R⟩ ≃ ⟨α,∈ ⟩. We call this α the order-type of ⟨A,R⟩ and
denote it by otp(A,R).

Proof. Uniqueness follows from before. To prove existence, let B = {a ∈ A |
∃x ∈ On.⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩}. Note that for every a ∈ B, there is a unique
ordinal x which witness a ∈ B. So we may apply replacement to B and form
the set C = {x ∈ On | ∃a ∈ B.⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩}. We claim that C is an
ordinal. First, since C is a set of ordinal, the ∈ relation on C is a well order.
To see that C is transitive, note that if y ∈ x ∈ C and ⟨AR[a], R⟩ ≃ ⟨x,∈ ⟩
then there is b ∈ AR[a] such that ⟨AR[b], R⟩ ≃ ⟨y,∈ ⟩. Hence b ∈ B and
y ∈ C. It follows that C is an ordinal. A similar argument proves that B is
an initial segment of A and if B = AR[c] for some c then c ∈ B by definition
so B = A. □

Remark 4.10. Without the axiom of replacement, one cannot prove theorem
4.8 as there is a model of ZFC − {Ax6} for which theorem 4.8 fails.

Notation 4.11. α < β iff α ∈ β and α ≤ β iff α < β ∨ α = β iff α ⊆ β.

Theorem 4.12. (1) If α is an ordinal then ∅ ≤ α.
(2) If α is an ordinal then α + 1 := α ∪ {α} is an ordinal and is the

successor of α in the sense that it is the minimal ordinal greater
than α.

(3) If A is a set of ordinals without a greatest element then supA := ∪A
is an ordinal strictly greater then all the ordinals in A.

Proof. Exercise. □

Definition 4.13. A successor ordinal is an ordinal of the form α + 1, oth-
erwise it is called limit.

Definition 4.14. Let 0 = ∅ and recursively define n+ 1 = n ∪ {n}.

Definition 4.15. α is anatural number iff ∀β ≤ α.β = 0 ∨ β is successor.

How can we argue that the set of natural numbers exists? Well we cannot
just from the current axioms

Ax7.(Infinity) ∃x.(0 ∈ X ∧ ∀y ∈ x.y ∪ {y} ∈ x)
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By induction, x contains all the natural numbers (Formally: otherwise,
suppose that n is a natural number such that n /∈ X. Then n ̸= 0 and
thus n = m ∪ {m} for some natural m < n. Let n′ = min(n \ X), then
n′ = m′∪{m′} and m′ < n′ so m′ ∈ X and therefore n′ ∈ X, contradiction.)
Now by comprehension we can define the set of natural numbers:

Definition 4.16. Denote by ω or N, the set of all natural numbers.

ω is the first limit ordinal above 0. Note that we do not care if ω is
”really” the set natural numbers, and all we care about is that it is some
realization of the Peano postulates:

Theorem 4.17. Let S(n) = n + 1, then ⟨ω, ∅, S⟩ is a model of Peano pos-
tulates:

(1) 0 ∈ ω.
(2) n ∈ ω → S(n) ∈ ω.
(3) n ̸= m⇒ S(n) ̸= S(m).
(4) (induction) ∀X ⊆ ω.(0 ∈ X ∧ n ∈ X ⇒ n+ 1 ∈ X) ⇒ X = ω

5. transfinite recursion and induction

We will formulate the induction and recursion theorem in a way that can
be applied to what we call classes. Formally, a class does not exist as a
mathematical object (as we have seen for V and for On). Given a formula
π(x) with a free variable x (we allow other free variables, indeed, the class
we are defining might depend on parameters) we think of the class Cϕ as
the ”collection” (whatever that means) Cϕ = {x | ϕ(x)}. So whenever Cϕ

appears in a mathematical statement, it should be clear how to replace Cϕ

by ϕ, for example:

(1) ∀x ∈ Cϕ.x satisfy... just mean ∀x.ϕ(x) ⇒ x satisfy...
(2) Cϕ ⊆ On means

∀x.ϕ(x) ⇒ x is an ordinal.

Note that if Cϕ is a class and A is a set then Cϕ∩A = {x ∈ A | ϕ(x)} which
is a set that exists by comprehansion.

The next theorems are formulated for classes and take their usual meaning
when the class is in fact a set:

Theorem 5.1. Let 0 ̸= C be a class of ordinal (formally, let ϕ be a formula
such that (∃x.ϕ(x))∧(∀x.ϕ(x) ⇒ x is an ordinal)). Then there is y = min(C)
(formally, ∃y.ϕ(y) ∧ ∀x.ϕ(x) → x ≥ y).

Proof. Let α ∈ C be any ordinal, then D = α+ 1 ∩C is a non-empty set of
ordinals, and therefore y = min(D) exists. Let us prove that y = min(C).
let x ∈ C, then either x > α in which chase x > α ≥ y of x ≤ y but then
x ∈ D and therefore x ≥ y. □
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Formally, what we have above is a theorem scheme, one for every formula
ϕ. This theorem enables us to prove the induction theorem over all the
ordinal!:

Theorem 5.2 (The induction theorem). Let Ψ be any formula.

(∀α ∈ On.[∀β < α.Ψ(β)] ⇒ Ψ(α)) ⇒ ∀α ∈ On.Ψ(α)

Proof. Suppose otherwise, we let C be the class of all ordinals α such that
̸= Ψ(α). By our assumption 0 ̸= C ⊆ On. Apply the previous theorem to
find α∗ = min(C), clearly, for every β < α∗, Ψ(β) should hold. However
¬Ψ(α∗) holds, which contradicts the assumption of the theorem. □

Theorem 5.3 (The recursion theorem). Suppose that F (x, y) is a formula
such that ∀x∃!y.F (x, y). Then one can write down a formula G(v, w) such
that

∀α ∈ On.∃!w.G(α,w) ∧ ∀α ∈ On∃x.∃y.(x = G ↾ α ∧ F (x, y) ∧G(α, y)

Before proving the theorem, let us explain the formulation of the theo-
rem. The formula F (x, y) is thought of as the formula f(x) = y for some
”function” f : V → V which accommodates some recursive information.
Then the theorem says that there is a function g : On→ V (which is given
by the formula G(v, w)) such that for every α ∈ On, g(α) = f(g ↾ α)).

To see how this relates to the usual way we define functions recursively,
recall that in a recursive definition of a function, we assume that ∀β < α,
g(β) has already been defined (in other words, g ↾ α has been defined) and
given this unknown definition we define g(α). The purpose of the function
f is to take that unknown x = g ↾α, which can be have any possible values,
and the output g(x) is what we would have wanted for the value of g(α) to
be. The recursion theorem simply tells you that given a function f (which
is defined on any possible sequence x) the function g which satisfies g(α) =
f(g ↾α) exists. Since we are talking about classes, this is all formulated with
formulas instead of functions.

Proof. the statement ”g is δ-approximation” means that ”g is a function
and dom(g) = δ and for every ρ < δ, F (g ↾ρ, g(ρ))”. We prove by transfinite
induction that for each δ, there is a unique δ-approximation. Then the
formula G(v, w) is

G(v, w) ≡ ∃ν < δ.∃g.g is a δ-approximation ∧ g(ν) = w

The for every ordinal α, since a δ approximation is unique, there is a unique
w such that G(α,w). Also, since we will prove that δ-approximations exists,
the second part of the formula will be satisfied. □

Remark 5.4. In many situations we use the induction and recursion theorem
simultaneously when we define a function g and assume that g↾α has already
been defined and satisfies some properties, then we define g(α) and prove it
satisfies some properties.
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Example 5.5. Ordinal arithmetic: for a fixed α, we define:

• α+ β by recursion on β
(1) α+ 0 = α.
(2) α+ (β + 1) = (α+ β) + 1.
(3) For a limit ordinal δ, we define α+ δ = supβ<δ α+ β.

• α · β by recursion on β
(1) α · 0 = α.
(2) α · (β + 1) = (α · β) + α.
(3) For a limit ordinal δ, we define α · δ = supβ<δ α · β.

• αβ by recursion on β
(1) α0 = 1.
(2) αβ+1 = αβ · α.
(3) For a limit ordinal δ, we define αδ = supβ<δ α

β.

1 + ω = supn<ω 1 + n = ω < ω1

2 · ω = supn<ω 2 · n = ω < ω + ω = ω + 2
2ω = supn<ω 2n = ω (so 2ω as ordinals and as cardinal is not the same!)

ω + ω2 = ω2

(ω + 1)2 = (ω + 1) · (ω + 1) = (ω + 1) · ω + ω + 1 = ω2 + ω + 1.

Proposition 5.6. (1) If α < β then for every γ, γ + α < γ + β.
(2) (α+ β) + γ = α+ (β + γ)

Proof. For (1), We prove by trasfinite induction of β that for every α < β
and every γ, γ + α < γ + β. For β = 0, the claim is vacuously true (since
there is no α < 0). Suppose that the claim holds for β and let us prove it
for β + 1. Let α < β + 1 and γ be any ordinal. Let us split into cases:

• If α < β, then by the induction hypothesis and the definition of ”+” in
the successor case,

γ + α < γ + β < (γ + β) + 1 = γ + (β + 1)

• If α = β, then as in the first case we get γ + β < γ + (β + 1).
For limit β, let α < β, then α+ 1 < β. By the induction hypothesis applies
to α+ 1 and the definition of ”+” is the limit case,

γ + α < γ + (α+ 1) ≤ sup
δ<β

α+ δ = α+ β

For (2), agan we prove it by induction on γ, for every α, β.
• For γ = 0 we have that:

(α+ β) + 0 = α+ β = α+ (β + 0)

• At successor step γ + 1, we have that

(α+β)+(γ+1) = ((α+β)+γ)+1 = (α+(β+γ))+1 = α+((β+γ)+1) = α+(β+(γ+1))
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• At limit steps γ, suppose that for every δ < γ we have that (α+β)+δ =
α+ (β + δ), then

(α+ β) + γ = sup
δ<γ

(α+ β) + δ = sup
δ<β

α+ (β + δ) =∗ α+ (β + γ)

To see why ∗ holds, we will use (1) and the definition of supremum.
Indeed, if δ < γ then from (1) we get that β + δ < β + γ and therefore
(again from (1)), α+(β+ δ) < α+(β+γ). Hence supδ<γ α+(β+ δ) ≤
α+(β+ γ). Note that β+ γ = supδ<γ β+ δ by definition and therefore
(since β+δ is strictly incresing with δ) we conclude that β+γ is a limit
ordinal and that sup{α+ ρ | ρ < β + γ}. It follows that

α+ (β + γ) = sup
ρ<β+γ

α+ ρ

Hence we need to check that

sup
δ<γ

α+ (β + δ) = sup
ρ<β+γ

α+ ρ

We have that {β+ δ | δ < γ} ⊆ β+γ so ” ≤ ” is clear (the sup is taken
over more elements). For the other direction, let ρ < β + γ then there
is δ < γ such that β+δ > ρ and by (1) we have that α+(β+δ) > α+ρ
so ” ≥ ” follows.

□

6. cardinals

Definition 6.1. Let A,B be any sets. We say that:
(1) A ∼ B if there is f : A→ B which is invertible.
(2) A ≾ B if there is f : A→ B which is injective.
(3) A ≺ B if A ≾ B and A ̸∼ B.

Theorem 6.2 (Cantor-Berstein). Let A,B be sets and supose that A ≾
B ∧B ≾ A then A ∼ B.

If A can be well ordered, then there α such that A ∼ α

Definition 6.3. Suppose that A can be well ordered. Denote by |A| to be
the minimal ordinal α such that A ∼ α.

Definition 6.4. An ordinal α is called a cardinal if α = |α|. Equivalently,
if for every β < α, β < |α|.

Note that |A| is only defined for sets which can be well ordered. We will
further discuss this problem in the subsection about the axiom of choice.

Exercise 6. (1) If |α| ≤ β ≤ α then |α| = |β|.
(2) n ̸∼ n+ 1 for every n. [Hint: induction.]
(3) If |α| = n then α = n.

Corollary 6.5. ω is a cardinal and every n ∈ ω is a cardinal.
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Proof. Otherwise, |ω| < ω and therefore |ω| = n so there |ω| < n + 1 < ω,
but then |n+ 1| = |ω| = n, contradicting the n ̸∼ n+ 1. □

Definition 6.6. A is finite if there is n such that |A| = n. A is countable
if |A| = ω. A is uncountable if |A| > ω.

Proposition 6.7. The following sets are countable: N,Z,Q,N×N,Nn for n ∈
N+,∪n<ωNn.

Based on the axioms so far, one cannot prove that there is an infinite set
A such that |A| > ω (or even A ̸∼ ω). We can still say the following:

Lemma 6.8. Every infinite cardinal is a limit ordinal.

Proof. Otherwise, κ = α + 1. and since κ is infinite (ordinal), then κ ≥ ω.
It is not hard to construct a bijection between α+1 and α in this situation
and therefore |κ| ≤ α < κ, contradiction. □

Ax8.(Power set) ∀x∃y.∀z.z ⊆ x⇒ z ∈ y

Definition 6.9. Let P (x) = {b | b ⊆ x}.

Theorem 6.10 (Cantor’s theorem). For every set x, x ≺ P (x).

Theorem 6.11. P (x) ∼ x{0, 1}

Proposition 6.12. If A ∼ A′ then P (A) ∼ P (A′).

So we now have sets which are not countable. But what about uncount-
able sets? the problem is that P (ω) might not admit a well order.

Theorem 6.13. For every ordinal α there is a cardinal κ such that α < κ.

Proof. Suppose otherwise, that there is an ordinal α such that for every
cardinal κ is at most α. In particular, for every ordinal β ≥ α, β ∼ α.
Let S = {R ∈ P (α × α) | R well-orders α}. S exists by the power set
axiom and comprehansion. Define for each R ∈ S, F (R) = otp(α,R). Then
by replacement the following is a set exists {E = F (R) | R ∈ S}. By
our assumption, for every β ≥ |α|, β ∼ α, and we can translate the order
(β,∈) to a well order R on α such that otp(α,R) = β. We conclude that
E = {β ∈ On | β ≥ |α|}. This is a contradiction to the fact that On was
already proven not to be a set (Show that the set E cannot be a set!). □

Definition 6.14. For every α, denote by α+ the minimal cardinal α < κ. a
cardinal of the form α+ is called a successor cardinal and a cardinal κ such
that for every α < κ, α+ < κ is called a limit cardinal.

Definition 6.15 (The ℵ hierarchy). By transfinite recursion we define ℵα

for every ordinal α ∈ On. ω0 = ℵ0 := ω ωα+1 = ℵα+1 := ℵ+
α and for a limit

δ, ωδ = ℵδ := supα<δ ℵα.

Theorem 6.16. (1) Every ℵα is a cardinal
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(2) For every infinite cardinal κ, there is α such that ℵα = κ.
(3) If α < β then ℵα < ℵβ.
(4) ℵα is limit cardinal iff α is a limit ordinal and ℵα is a successor cardinal

iff α is a successor ordinal.

Proof. For (1), we go by induction of α, the base case and succesoor case are
easy by the definition of ℵα+1. For limit δ, suppose toward a contradiction
that |ℵδ| < ℵδ, then by definition of sup, there is α < δ such that |ℵδ| < ℵα.
Since δ is limit, we have that α+ 1 < δ and therefore

ℵα < ℵα+1 ≤ ℵδ

Which implies by previous exercises that |ℵα| = |ℵδ| < ℵα, contradicting
the fact that ℵα is a cardinal by the induction hypothesis. As for (2), let κ
be a cardinal and let δ = sup{γ | ℵγ ≤ κ}. We claim that ℵδ = κ. Let us
split into cases: if δ = max({γ | ℵγ ≤ κ}), then ℵδ ≤ κ and by maximality
ℵδ+1 = ℵ+

δ > κ. It follows that κ = |κ| = ℵδ. If δ is limit, then again, since

ℵδ = supα<δ ℵα, it follows that ℵδ ≤ κ. It follows again that ℵ+
δ > κ and

thus ℵδ = |κ| = κ. (3) and (4) are left as exercises. □

7. The real numbers

It is possible to define ⟨Z,+, ·, < ⟩ (similar to field of fractions but with
+) and Q from pure algebraic constructions from N (the field of fractions).
But it is not clear how to define R. The set theoretic approach is to use or-
der/topological properties to characterize R. Before moving to the definition
of R, let us prove that Q also has an order characterization:

Theorem 7.1 (Cantor’s theorem). Let ⟨A,<A ⟩ be an ordered set such that:
(1) |A| = ℵ0.
(2) ⟨A,<A ⟩ has no least and last element.
(3) A is dense in itself, namely for every a1, a2 ∈ A, if a1 <A a2 then there

is a3 ∈ A such that a1 <A a3 and a3 <A a2.

In term of Logic, this is to say the theory of dense ordered set without
first and last element is ℵ0-catgorical.

There are two usual ways to realize R, either with Cauchy sequences or
with Dedekind cuts. We will follow the latter.

Definition 7.2. A set X ⊆ Q is called a Dedekind cut if X ̸= ∅,Q , X
has no maximal element, and X is downward closed, namely, ∀x ∈ X∀y ∈
Q.y < x⇒ y ∈ X.

R := {X ∈ P (Q) | X is a Dedekind cut}

We order Dedekind cuts by inclusion. There is a standard way to identify
Q inside R, by q 7→ Q<[q]. This function is 1− 1 and order-preserving.

Example 7.3. The set X = {q ∈ Q | q < 0∨ q2 < 2} is a Dedekind cut and
there is no q ∈ Q such that X = Q<[q]
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Theorem 7.4. Q is dense in R
Proof. If X1 < X2 are any cuts, fix any q ∈ X2 \ X1 then X1 ≤ q < X2.
Since X2 has no maximal element, there is q′ ∈ X2 such that q < q′, then
clearly, X1 < q′ < X2. □

Definition 7.5. A ordered set ⟨A,R⟩ is complete if any bounded set X has
a least upper bound (supremum)

Theorem 7.6. R is complete

Proof. Let F ⊆ R be a non empty bounded set of reals, then ∪F is a
Dedekind cut which is the supremum of F . □

Theorem 7.7. R is the unique (up to isomorphism) ordered ⟨A,R⟩ set such
that:
(1) ⟨A,R⟩ has no first and last element.
(2) ⟨A,R⟩ contains a countable dense subset. (separability)
(3) ⟨A,R⟩ is complete.

The cardinality of R is called the continuum and is denoted by c.

Theorem 7.8. R is not countable

Proof. Suppose otherwise, then R = {rn | n ∈ N}. Let us define a sequence:

a0 < a1 < a2...an < ... < bn < bn−1... < b2 < b1 < b0

as follows: a0 = r0 and b0 = rk for the minimal k such that rk > a0. Suppose
that an < bn were defined and let an+1 = rk for the minimal k such that
an < rk < bn. Let bn+1 = rk for the minimal k such that an+1 < rk < bn.
By the completeness of R there is a = supn<ω an. Note that for every n,
an < a < bn. There is k∗ such that a = rk∗ and there if l > k∗ such that
for some n, bn = rl. This means that at stage n − 1, we had an−1 < bn−1

and we chose bn = rk for the minimal k such that an−1 < rk < bn−1 and
this minimal k was l. However, an−1 < a = rk∗ < bn−1 also satisfies this
property and k∗ < l, contradiction. □

Theorem 7.9. R ∼ P (N)
Theorem 7.10. |(α, β)| = |[α, β]| = |R|
7.1. Three questions about the real numbers.

Question 1. Can the real numbers be well-ordered?

Question 2. The continuum hypothesis: is there a set A ⊆ R such that
A ̸∼ 0, 1, 2, ..., ω,R?
Definition 7.11. An ordered set ⟨A,R⟩ is called CCC (countable chain
condition) if whenever I is a set of disjoint open intervals in A, then |I| ≤ ℵ0.

Proposition 7.12. R is ccc.

Question 3. Suslin hypothesis: If we replace separability by ccc do we still
obtain a characterization of R
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8. The axiom of choice

Every time we perform the following:

”X ̸= ∅ let x ∈ X”

we are making a choice. This line can appear only finitely many times in
a formal proof and therefore we are allowed to choose finitely many times.
However, we encounter a problem if we would like to choose infinitely many
times and we need to introduce the axiom of choice:

Ax9.(Choice)∀A.(∀a ∈ A.a ̸= ∅) ⇒ (∃f : A → ∪A.∀a ∈ A.f(a) ∈ a)

We denote the axiom of choice by AC. Here are some basic theorems which
use the axiom of choice:
(1) If g : A→ B is onto then there is f : B → A such that g ◦ f = IdB.
(2) If A is infinite then N ≾ A.
(3) A ≾ B iff there is a function f : B → A which is onto.
(4) The countable union of countable sets is countable.
Other non set-theoretic examples:
(1) Every field has an algebraically closed closure.
(2) Every ideal is contained in a maximal ideal.
(3) There exists a set which is not Lebesgue measurable.
(4) Tychonoff’s theorem: a product of compact topological spaces is com-

pact.
(5) Hahn-Banach theorem.
(6) Completeness theorem for first order logic.
(7) the compactness theorem for first order logic.
(8) R can be well ordered.

Theorem 8.1. The following are equivalent:
• AC.
• Every set can be well ordered.
• Zorn’s lemma

Corollary 8.2 (AC). For every set A, |A| is well defined and in particular
the cardinals form a class of representatives for all possible cardinalities.

Corollary 8.3 (AC). The cardinalities of all sets are well ordered.

Corollary 8.4 (AC). For any set A, |A×A| = |A|.

Definition 8.5 (AC). The Continuum Hypothesis (CH) is the statement
that |R| = ℵ1.

9. cardinal arithmetic

Definition 9.1. Let κ, λ be cardinals. we define:
(1) κ+ λ = |κ× {0} ⊎ λ× {1}|.
(2) κ · λ = |κ× λ|.
(3) κλ = |λκ|
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Exercise 7. If |A| = |A′| and |B| = |B′| then:
(1) |A× {0} ⊎B × {1}| = |A′ × {0} ⊎B′ × {1}|.
(2) |A×B| = |A′ ×B′|.
(3) |BA| = |B′

A′|

Theorem 9.2 (Basic properties- Not assuming AC). Let κ, λ, σ be any
cardinals (finite or infinite) then
(1) κ+ λ = λ+ κ , κ · λ = λ · κ (commutativity)
(2) (κ+ λ) + σ = κ+ (λ+ σ), κ · (λ · σ) = (κ · λ) · σ.(Associativity)
(3) κ · (λ+ σ) = κ · λ+ κ · σ.(Distributively)
(4) κ + 0 = κ, κ · 0 = 0, κ · 1 = κ, κ1 = κ, 1κ = 1, 00 = 1, for κ > 0,

0κ = 0. (Neutral elements)
(5) For every n κ+ κ+ κ+ κ+ ...+ κ︸ ︷︷ ︸

n times

= n · κ , κ · κ · κ · κ · ... · κ︸ ︷︷ ︸
n times

= κn.

Monotonicity: If κ ≤ λ and σ ≤ τ then
(1) κ+ σ ≤ λ+ τ .
(2) κ · σ ≤ λ · τ .
(3) κσ ≤ λτ .
Rules of exponent:
(1) (κλ)σ = κλ·σ.
(2) κλ+σ = κλ · κσ.
(3) (κ · λ)σ = κσ · λσ

Note that for natural numbers this is the usual definition of addition,
multiplication and power.

Notation 9.3. κ<λ = supδ<λ κ
δ.

Corollary 9.4 (AC). If κ, λ are infinite then:
(1) κ+ λ = κ · λ = max(κ, λ).
(2) Suppose that for every α < κ, Xα is a set such that |Xα| ≤ κ. Then

| ∪α<κ Xα| ≤ κ
(3) For δ ≤ κ, κδ = |[κ]δ| where κδ = {X ∈ P (κ) | |X| = δ}.
(4) κ<ω = κ.

Proof. For (2), for each α < κ choose a function fα : κ → Xα which is
onto. Then define a function f : κ × κ → ∪α<κXα by f(α, β) = fα(β).
Then f is onto and therefore | ∪α<κ Xα| ≤ κ · κ = κ. For (3), The function
F (f) = Im(f) is an onto fnction from δκ to [κ]δ. For the other direction,
δκ ⊆ {R ∈ P (κ × δ) | |R| = δ}. Since |P (κ × δ)| = |P (κ) we get that
|δκ| ≤ |[κ]δ|. For (4), note that κn = κ for every n ≥ 1 (by induction and
since κ · κ = κ) and therefore κ<ω = supn<ω κ

n = κ □

It follows that κ<δ = |[κ]<δ| where [A]<δ = {B ⊆ A | |B| < δ}. Also from
(1) we see that only the exponent operation is left unsettled. As we will see
later, ZFC cannot determine theses values. However, there are some cases
which are settled, in the rest of this chapter we investigate what restrictions
ZFC pose one these values:
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Theorem 9.5. If λ ≥ ω and 2 ≤ κ ≤ λ then

κλ = 2λ

Proof. 2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ. □

In case λ < κ we can say a bit more about κλ but we need the following
definition:

Definition 9.6. Let α be an ordinal. We define cf(α) to be the minimal
γ such that there is an cofinal/unbounded function f : γ → α2.

Example 9.7. cf(ω) = ω, cf(ω1) = ω1 (since if α < ω1 and f : α→ ω1, we
have that sup(f) is a countable union of countable sets so | sup(f)| = ω. It
follows that sup(f) < ω1.

Remark 9.8. (1) cf(α) ≤ α.
(2) cf(α+ 1) = 1.
(3) there is always f : cf(α) → α which is cofinal and strictly increasing.

Exercise 8. If α is a limit ordinal and f : α → β is cofinal and strictly
increasing then cf(α) = cf(β).

Exercise 9. For every limit ordinal α, cf(ℵα) = α.

Corollary 9.9. cf(cf(β)) = cf(β).

Definition 9.10. a limit ordinal κ called regular if cf(κ) = κ, otherwise it
is called singular.

Corollary 9.11. If κ is regular then κ is a cardinal.

Example 9.12. ω is regular and ω1 is regular. cf(ℵω) = ω < ℵω is singular.

Theorem 9.13 (AC). For every κ, κ+ is regular.

Proof. Otherwise, there is a function f : λ→ κ+ for some λ ≤ κ. For every
α < λ, let Xα = f(α), then |Xα| ≤ κ and therefore |κ+| = | ∪α<λ Xα| ≤ κ,
contradiction. □

Is there a limit regular cardinal greater than ℵ0?

Definition 9.14. A cardinal κ is called
(1) Weakly inaccessible if it regular and a limit cardinal.
(2) Strongly inaccessible if it is regular and

∀λ < κ.2λ < κ

weakly and strongly inaccessible cardinals are so-called ”large cardinals”,
these are cardinals which ZFC cannot prove their existence.

Lemma 9.15 (Konig’s Lemma). Let κ be an infinite cardinal, and assume
that cf(κ) ≤ λ, then κλ > κ

2f : γ → α is cofinal/unbounded if Im(f) is inbounded in α.



18 TOM BENHAMOU UNIVERSITY OF ILLINOIS AT CHICAGO

Proof. Let f : λ→ κ be cofinal. Suppose toward a contradiction that there
is G : κ→ λκ which is onto. Define g : λ→ κ by

g(α) = min(κ \ {G(µ)(α) | µ < f(α)})

To see that g /∈ Im(G), let ρ < κ then there is β < λ such that ρ < f(β).
Hence g(β) /∈ {G(µ)(β) | µ < f(β)} and in particular g(β) ̸= G(ρ)(β), hence
g ̸= G(ρ). This is a contradiction to the fact he G is onto. □

Corollary 9.16. For any infinite cardinal κ, cf(2κ) > κ.

Proof. Note that (2κ)κ = κ, hence by the contrapositive of Konig’s lemma,
we get cf(2κ) > κ. □

9.1. The continuum function. The function α 7→ 2ℵα is called the con-
tinuum function and as we will see, its values are highly undetermined by
ZFC.

Definition 9.17 (AC). The Generalized Continuum Hypothesis (GCH) is
the statement that for every α, 2ℵα = ℵα+1.

Under GCH, all the values of κλ (and therefore the continuum function)
can easily be computed,

Theorem 9.18 (AC+GCH). Let λ, κ be infinite cardinals. Then:
(1) If λ ≥ κ, then κλ = λ+.
(2) If cf(κ) ≤ λ < κ then κλ = κ+.
(3) If λ < cf(λ) then κλ = κ

Proof. It remains to prove 3, so κ ≤ κλ = supδ<κ δ
λ ≤ supδ<κ δ

+ = κ □

Let us define the beth function:

Definition 9.19. ℶ0 = ℵ0, ℶα+1 = 2ℶα and for limit δ, ℶδ = supα<δ ℶα.

Exercise 10. GCH is equivalent to the statement that for every α, ℶα = ℵα.

To summarize what we know about the continuum function, we have the
following theorem:

Theorem 9.20. (1) κ < λ⇒ 2κ ≤ 2λ. (Monotonicity)
(2) cf(2κ) > κ. (Konig’s lemma)

(3) If κ is limit then 2κ = (2<κ)cf(κ).

Proof. We need to prove (3), κ = supi<cf(κ) κi. So the map

X ⊆ κ 7→ ⟨X ∩ κi | i < cf(κ)⟩

is a 1− 1 function from P (κ) to cf(κ)([κ]<κ). Hence

2κ ≤ (2<κ)cf(κ) ≤ (2κ)cf(κ) = 2κ·cf(κ) = 2κ

□
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In case κ is regular, (3) is not very interesting and as we will see, constrains
(1), (2) are the only limitations ZFC pose on the continuum function in
ZFC. However, (3), suggests that for singular cardinals the situation is
very different and depends heavily on thecontinuum function restricted to
cardinals below it and on the exponent values. For example we have the
following corollary:

Corollary 9.21. If κ is singular, and the continuum function is eventually
constant below κ with value λ, then 2κ = λ.

Definition 9.22. A cardinal κ is strong limit if ∀ν < κ.2ν < κ.

Note that a strong limit cardinal is in particular a limit cardinal.

Exercise 11. (1) Prove that there is a strong limit cardinal and that the
least such carinal is of cofinality ω.

(2) Prove that if κ is strong limit then:

∀ν, λ < κ.λν < κ

(3) If κ is strong limit then 2κ = κcf(κ)

Definition 9.23. The Singular Cardinal Hypothesis is the statement:

For every strong limit singular cardinal κ, 2κ = κ+

There is another formulation which implies the above, which involves all
singular cardinals:

For every singular cardinal κ, 2cf(κ) < κ⇒ κcf(κ) = κ+

We will leave it as an exercise to prove that the second formulation deter-
mines the continuum function for all singular cardinals. While the second
version implies the first, it is known that the two formulations are not equiv-
alent.

10. infinite combinatorics

Many finite combinatorial principles generalize to the infinite. For exam-
ple:

Theorem 10.1 (Pigeonhole Principle). If κ < cf(λ) then for every function
f : λ→ κ there is i < κ such that |f−1[{i}]| = λ.

Proof. Otherwise, λ = ∪i<κf
−1[{i}] and each θi := |f−1[{i}]| < λ then

let θ = supi<κ θi < λ but then λ = | ∪i<κ f
−1[{i}]| ≤ max(κ, θ) < λ,

contradiction. □

Theorem 10.2 (Ramsey Theorem). Let f : [ω]2 → n be any function
(coloring of the full graph with n-many colors) then there is H ⊆ ω, |H| = ω
such that f [H]2 is constant.

Example 10.3. This does not generalize to higher cardinals: There is a
function G : [2κ]2 → κ with no homogenous set of size 3.
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one of the most important tools in infinite combinatorics is ”clubs” and
”stationery sets”.

10.1. Clubs and stationery sets.

Definition 10.4. Let κ be a limit ordinal cf(κ) > ω. A set C ⊆ κ is call
closed if for every α < κ, if sup(C ∩ α) = α then α ∈ C. C is called a club
if it is closed and unbounded.

Example 10.5. (1) Sets of the form (α, κ) = {β < κ | α < β} are clubs.
(2) {α < κ | α is a limit ordinal} is a club.
(3) {α+ 1 | α < κ} is not a club.
(4) If A is unbounded then cl(A) := {α < κ | sup(A ∩ α) = α} is a club.
(5) {ωα | α < κ} is a club.
(6) If C is a club and f : κ → κ is continuous and increasing then f [C] is

a club.

Clubs are in some sense ”large” subsets of κ.

Definition 10.6. Let f : [κ]n → κ be any function. A closure point of f is
some α < κ such that f ′′[α]n ⊆ α.

Exercise 12. κ be regular, then for every function f : [κ]n → κ, then set
Cf = {α < κ | α is a closure point of f} is a club.

Proof. To see that Cf is closed, suppose that α = sup(Cf ∩α). In particular,

α is a limit point. Let us prove that α ∈ Cf , if β⃗ ∈ [α]n, then there is

α′ ∈ Cf ∩ α such that β⃗ ∈ [α′]n and since α′ ∈ Cf , then f(β⃗) < α′ < α.
To see that Cf is unbounded, let δ < κ, define a sequence ⟨αk | k < ω⟩
recursively: α0 = δ+1 and αk+1 = sup(f ′′[αk]

n). Let α∗ = supk<ω αk, then

δ < α∗ ∈ Cf since if β⃗ ∈ [α∗]n, then there is k < ω such that β⃗ ∈ [αk]
n and

therefore f(β⃗) < αk+1 < α∗. □

Proposition 10.7. Suppose that κ is an ordinal of uncountable cofinality,
the intersection of less than cf(κ)-many clubs is a club

Proof. Let ⟨Ci | i < λ⟩ be clubs and cf(κ) > λ. Let us prove that ∩i<λCi

is a club. It is straightforward to see that the intersection of closed sets
is closed. To see that it is unbounded, let δ < κ and let us construct a
sequence ⟨αn | n < ω⟩ as follows: α0 = δ. Suppose that αk was defined and

let us defined αk+1 as the limit of the sequence ⟨βk+1
j | j < λ⟩ where βj is

defined again recursively as follows:

β0 ∈ C0 \ αk

and
βj ∈ Cj \ sup

i<j
βi

Note that supi<j βi < κ by the cofinality assumption. Let α∗ = supk<ω αk

and let us prove that α∗ ∈ ∩j<λCj . Indeed for every j < λ, we have
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αk < βk+1
j < αk+1 and therefore α∗ = supk<ω β

k+1
j so sup(Cj ∩ α∗) = α∗

and since Cj is a club, α∗ ∈ Cj . □

Definition 10.8. Let ⟨Ai | i < κ⟩ be a sequence of subsets of κ. Define

(0) ∆i<κAi := {α < κ | ∀β < α.β ∈ Aα

Example 10.9. ∆i<κ(i, κ) = κ, ∆i<κ(i+ 1, κ) = Lim(κ).

Proposition 10.10. For every i < κ, (∆j<κAj) \ i+ 1 ⊆ Ai.

Theorem 10.11. Let ⟨Ci | i < κ⟩ be a sequence of clubs, then ∆i<κCi is a
club.

Proof. Let C∗ denote the diagonal intersection. To see that it is closed, let
α = sup(C∗ ∩ α), and let i < α, then for every β ∈ (i, α) ∩ C∗ we have that
i < β ∋ C∗ and so β ∈ Ci. it follows that α = sup(α ∩ Ci) and therefore
α ∈ Ci. To see it is unbounded, let us construct a sequence ⟨αn | n < ω⟩:
α0 = δ, αn+1 ∈ ∩i<αnCi \αn +1 and α∗ = supn<ω αn. To see that α∗ ∈ C∗,
let i < α∗, then there is n < ω such that αn > i and for each m ≥ n,
αm ∈ Ci so α

∗ = sup(C∗ ∩ α∗), and α∗ ∈ C∗. □

Definition 10.12. A subset S ⊂ κ is called stationary if S ∩ C ̸= ∅ for
every club C.

Example 10.13. (1) Clubs are stationery sets.
(2) S is non-stationary iff S ⊆ κ \ C for some club C. {α + 1 | α < κ} is

non-stationary
(3) C ∩ S is stationary.
(4) {α < κ | cf(α) = λ} =: Eκ

λ is stationary.

Theorem 10.14 (Fodor’s theorem). Let S be stationary and f : S → κ be
regressive. Then there is a stationary set S′ ⊆ S such that f ↾S′ is constant.

Proof. Suppose not, then for every i < κ, f−1[{i}] is no stationary, and
therefore the is a club Ci such that Ci ∩ f−1[{i}] = ∅. Let C = ∆i<κCi,
then C is a club and therefore C ∩ S ̸=. Let α ∈ C ∩ S then i = f(α) < α
since f is regressive. Thus α ∈ f−1[{i}]. but since α ∈ C \ i + 1, we have
that α ∈ Ci contradiction. □

Theorem 10.15. The ∆-system lemma.

Theorem 10.16 (Ulam). there are κ-many pairwise disjoint stationary sub-
sets of κ.


